Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biomed Pharmacother ; 127: 110114, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304852

RESUMO

Thalidomide was first marketed in 1957 but soon withdrawn because of its notorious teratogenicity. Studies on the mechanism of action of thalidomide revealed the pleiotropic properties of this class of drugs, including their anti-inflammatory, antiangiogenic and immunomodulatory activities. Based on their notable activities, thalidomide and its analogues, lenalidomide and pomalidomide, have been repurposed to treat erythema nodosum leprosum, multiple myeloma and other haematological malignancies. Thalidomide analogues were recently found to hijack CRL4CRBN ubiquitin ligase to target a number of cellular proteins for ubiquitination and proteasomal degradation. Thalidomide-mediated degradation of SALL4 and p63, transcription factors essential for embryonic development, very likely plays a critical role in thalidomide embryopathy. In this review, we provide a brief retrospective summary of thalidomide-induced teratogenesis, the mechanism of thalidomide activity, and the latest advances in the molecular mechanism of thalidomide-induced birth malformations.


Assuntos
Teratogênese/fisiologia , Talidomida/efeitos adversos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Humanos
2.
Curr Protein Pept Sci ; 19(2): 155-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28707598

RESUMO

Cells possess protein quality control mechanisms to maintain proper cellular homeostasis. In eukaryotes, the roles of the ubiquitination and proteasome-mediated degradation of cellular proteins is well established. Recent studies have elucidated protein tagging mechanisms in prokaryotes, involving transfer messenger RNA (tmRNA) and pupylation. In this review, newer insights and bioinformatics analysis of two distinct bacterial protein tagging machineries are discussed. The machinery for tmRNAmediated tagging is present in several eubacterial representatives, e.g. Escherichia coli, Mycobacterium tuberculosis, Bacillus subtilis etc., but not in two archaeal representatives, such as Thermoplasma acidophilum and Sulfolobus solfataricus. On the other hand, the machinery involving tagging with the prokaryotic ubiquitin-like protein (Pup) is absent in most bacteria but is encoded in some eubacterial representatives, e.g. Mycobacterium tuberculosis and Mycobacterium leprae. Furthermore, molecular details on the relationship between protein tagging and enzymes involved in protein degradation in bacteria during infection are emerging. Several pathogenic bacteria that do not express the major ATP-dependent proteases, Lon and Caseinolytic protease (ClpP), are avirulent. Also, some ATP-independent peptidases, such as PepA and PepN, modulate the infection process. The roles of bacterial proteins involved in tagging and degradation during infection are discussed. These aspects add a new dimension to better understanding of the peculiarities of host-pathogen interactions.


Assuntos
Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , RNA Bacteriano/metabolismo , Animais , Archaea/metabolismo , Proteínas Arqueais/genética , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Ubiquitina/metabolismo , Ubiquitinação
3.
J Cell Sci ; 130(12): 1997-2006, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476940

RESUMO

Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Assuntos
Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Ubiquitinação , Animais , Dano ao DNA , Endopeptidases/metabolismo , Humanos , Inflamação , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Mapeamento de Interação de Proteínas , Proteólise , Transdução de Sinais
4.
J Cell Sci ; 130(12): 1985-1996, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476939

RESUMO

Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Assuntos
Bactérias/enzimologia , Fenômenos Fisiológicos Bacterianos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Escherichia coli , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Legionella , Camundongos , Plantas/microbiologia , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Salmonella , Transdução de Sinais , Nicotiana , Ubiquitinação , Virulência , Xanthomonas campestris
5.
Mol Immunol ; 56(4): 513-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23911408

RESUMO

Leprosy is a chronic human disease that results from infection of Mycobacterium leprae. T reg cells have been shown to have important implications in various diseases. However, in leprosy, it is still unclear whether T regs can mediate immune suppression during progression of the disease. In the present study, we have proposed the putative mechanism leading to high proportion of T reg cells and investigated its significance in human leprosy. High levels of TGF-ß followed by adaptation of FoxP3(+) naive and memory (CD4(+)CD45RA(+)/RO(+)) T cells were observed as the principal underlying factors leading to higher generation of T reg cells during disease progression. Furthermore, TGF-ß was found to be associated with increased phosphorylation-mediated-nuclear-import of SMAD3 and NFAT towards BL/LL pole to facilitate FoxP3 expression in these cells, the same as justified after using nuclear inhibitors of SMAD3 (SIS3) and NFAT (cyclosporin A) in CD4(+)CD25(+) cells in the presence of TGF-ß and IL-2. Interestingly, low ubiquitination of FoxP3 in T reg cells of BL/LL patients was revealed to be a major driving force in conferring stability to FoxP3 which in turn is linked to suppressive potential of T regs. The present study has also pinpointed the presence of CD4(+)CD25(+)IL-10(+) sub class of T regs (Tr1) in leprosy.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Hanseníase/imunologia , Linfócitos T Reguladores/imunologia , Acetilação , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adolescente , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclosporina/farmacologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunossupressores/farmacologia , Interleucina-2/imunologia , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Isoquinolinas/farmacologia , Hanseníase/metabolismo , Hanseníase/patologia , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Pirróis/farmacologia , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/imunologia , Proteína Smad3/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ubiquitinação , Adulto Jovem
6.
Science ; 327(5971): 1345-50, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20223979

RESUMO

Half a century ago, thalidomide was widely prescribed to pregnant women as a sedative but was found to be teratogenic, causing multiple birth defects. Today, thalidomide is still used in the treatment of leprosy and multiple myeloma, although how it causes limb malformation and other developmental defects is unknown. Here, we identified cereblon (CRBN) as a thalidomide-binding protein. CRBN forms an E3 ubiquitin ligase complex with damaged DNA binding protein 1 (DDB1) and Cul4A that is important for limb outgrowth and expression of the fibroblast growth factor Fgf8 in zebrafish and chicks. Thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting the associated ubiquitin ligase activity. This study reveals a basis for thalidomide teratogenicity and may contribute to the development of new thalidomide derivatives without teratogenic activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeo Hidrolases/metabolismo , Teratogênicos/toxicidade , Talidomida/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Embrião de Galinha , Proteínas Culina/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Membro Anterior/anormalidades , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Peptídeo Hidrolases/genética , Teratogênicos/metabolismo , Talidomida/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitinação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA